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ANTIPLANE WAVES IN AN ELASTIC MEDIUM WITH A 
BIPERIODIC SYSTEM OF CAVITIES? 
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Using the symmetric-potential method, a numerical and qualitative investigation is made of antiplane (S-H) waves in a 
homogeneous isotropic elastic medium with a system of circular cylindrical cavities with group symmetry C~ [1]. © 1998 Elsevier 
Science Ltd. All fights reserved. 

1. We will consider antiplane stationary wave motions in a homogeneous isotropie elastic space, where 
the displacements of points are parallel to the x3 axis and the magnitude of these displacements are 
independent of that coordinate. In this case, the amplitude values of the displacements satisfy the 
Helmholtz equation 

AI~ + g2U = O, X = ¢o Iv (1.1) 

(co is the angular frequency of the wave and a) is the velocity of propagation of transverse waves in the 
medium). 

We shall seek a solution of the Helmholtz equation with a special form of right-hand side: a system 
of EM Dirac delta functions concentrated at the points Xl = mll, x2 = nl2 (m, n = O, :1:1, +-.2 . . . . .  M)  
and multiplied by [i(max + nix2)] 

M 
Au+x2u  = ~. exp[i(ma t + na2)]8(x t -ml t )8(x2  -n12) (1.2) 

m,n=-M 

Here /i, a~ (j = 1, 2) are certain constants (I ~1  ~< re). Following the maximum absorption 
• • " 2 .  2 principle, we replace x m (1.2) by × + ie, and then perform a double Fourier transformation with 

respect to the coordinates Xl, x2. We obtain 

l M 
~, exp[ im( lj{l - a I ) + in(12~ 2 - a 2)] U(~l, ~2) = x2 + i £ -  ~2 t - ~ m.n=-M (1.3) 

We then perform the double inverse Fourier transformation in (1.3), meaning that we take the limit 
[3] 

U(Xl,X2)= lim JJ u(~l ,~2)exp(- i~ lx  I -i~2x2)dXldX 2 (1.4) 

We distribute the system EM over the whole plane, that is, we let M tend to infinity. Taking the limit 
as M ---> ~ in (1.3) and (1.4), using the equation [3] 

2n 
e x p [ - i m ( a  - ~ ) ]  = "7- 

n l  o o  

and putting e = 0, from (1.4) we will have 

F(a, t0,x) =/~/2 E G~/exp(-i{i.,x I - i ~ 2 , j X 2 )  
k,j 

~2 )-t 2 k ~ - a l  
, = i ,  ' 
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(1.5) 

~2.j 2 i n -  a 2 
= .  , ; (z  = ( c q , l : l  2 )  12 
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Similarly, the double sum in (1.5) is taken to mean the limit of the corresponding finite sum with 

Note that 

F(a, co, x I +nll, x2 + m/~) = exp(ina I + ima 2 )F((x, to, x I , x 2 ) (1.6) 

Below we will call functions such as this (x-periodic, or transformed according to an irreducible 
representation of the subgroup of translations. 

Note that as the frequency co tends to ~.~ = (~ + ~d) u2 the function F((x, co, x) (we call it Green's 
(x-periodic function) tends to infinity, indicating resonance. 

We will show that the series in (1.5) converges when co ~ ~j and [ x I ~ 0. Using a similar method 
to that employed in [4], we derive the two-dimensional analogue of the Euler-Maclanrin formula 

Pk,qj  GI'I H u 0 

1 ,,i (vo) wj(vl) -] 
+--~ ,~,(uo)~f(ut'w)dw+l~ ~ / ( u l ' w ) d w J  + 

! FI u~ 1 w,(vl) + 
v,, J w,,,v,,1 

wltuo) -[ 
- ±  f f~o(Uo, W)d.,l+O(max I f(u,w)O 

h 2 wo(v.) J u,weH 

~m+n f 
p ,  = h I k + a t , TI j = h2 J + a2 ; finn = Ou mow" (1.7) 

Here H is a region in the u, w plane which possesses the following property: the intersection of any 
straight line u = const with this region is either empty or a single segment; w = w0(u) and w = wl(x)) 
are the lower and upper boundaries of H, and ~)0 and 131 are the abscissae of the extreme left- and right- 
hand points of this region. 

Note that for k and j of large modulus 

( 2 2 -I 
Gkj - ~ l , k  

We will applythe asymptotic expansion (1.7) to formula (1.5), assuming that I-I is the part of the nng 
r~ <~ ~2 + wZ <~ ~ which lies in the first quadrant of the plane uw, Pk = ~IJ~, TI: = ~2 j, hx = 2~/11, h2 = 
2~/12;f(~, w) = --cxp(--d~.~fl - iwx2)/(~ 2 + wE). Then w0 = (rE -- ~2)I/2 when ~ ~< rl an~i w0 = 0 for wl ~< 

It can be seen that the single integrals on the fight-hand side of (1.7) are of the order of 1/r v By 
following a similar argument for the other quadrants of the ~, w plane and adding the resulting formulae, 
after transfomdng to polar coordinates ~ = r cos 0, w = r sin 9 in the double integral we find that 

1 5"-5". Gqexp(-i~|.,x, -i~2.jx2)= 
1~1~ ~ ~ ~ 

. .8,  
! 

7 1 i exp[-ilxlrsin(O+,)]d0dr+ =-2-Z'~ r~ r k rl ) 

The angle ¢ is found from the  condi t ions :  sin ¢ = x~/] x I, cos  O = x2/I x I, I x I = (x2~ + x~) ~ .  T h e  last 
equation in the chain (1.8) was obtained using the periodicity of the integrand with respect to 0 and 
the Sommerfeld integral representation 

J , , ( z ) =  I exp(izsin ¢ - / h e ) d #  (1.9) 
--'K 
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The integral 

Jo(Ixlr) dr 
I r 

converges for ] x I ~ 0, and so the last stage in the chain of Eqs (1.8) can be made as small as desired 
for sufficiently large rl. This also implies that the double series in (1.5) is convergent when I x I ~ 0. 

We now put r2 = oo. Integrating by parts in the last stage of (1.8), we find that it is of  the order of 
(2n) -1 lnl x I. This means that Green's a-periodic function F(o~, to, x) has a logarithmic singularity at 
I x l = 0 .  

Isolating this singularity, we write 

F(a ,  to, x) = R(a,  to, x )+  (2~) -1 inlxl (1.10) 

R(a,t~,x) = ~ ~, (G~ -g~)exp(-i~,.,x, -i~2.jz2) 
k.# 

Here gtq are the coefficients of the expansion of the function (2re) -1 lnl x I in a double Fourier series 
in terms of the functions exp(-/~-~ -i~2j) (k,j = 0, -1 ,  ±2  . . . .  ). The series (1.11) is absolutely convergent 
and is a continuously differentiable function of x. 

2. Consider a homogeneous isotropic elastic medium with a system of circular cylindrical cavities 
which is invariant under transformations of the group C2v consisting of reflections in two systems of 
parallel planes oik (j = 1, 2; k = 0) and translations (shears) by vectors which are multiples of the vectors 
a 1 and a 2 (Fig. 1). We isolate the so-called basic rectangle, which, when acted on by transformations of  
the subgroup of  translations, can cover the entire medium (shown by the bold continuous line). We 
place the origin of the complete system of coordinatesxrr 2 at the centre of the basic rectangle. Similarly, 
we choose a basic elementary cell, which when acted on by all transformations of the group C2v can 
cover the medium (shown by the bold dashed line). On each of the elementary cells (obtained from 
the basic cell using elements of  the symmetry group) we select a local system of coordinates such that 
they transform into one another in the given transformations. The set of these systems of  coordinates 
is called an invariant system. 

Theorem. The frequencies of  harmonic waves in an elastic medium with a discrete spatial symmetry 
group G split up into series corresponding to irreducible representations of that group: the amplitude 
functions of the displacements of points of the media corresponding to each frequency can be selected 
in such a way that they are transformed according to a definite irreducible representation of  the group 
G. 
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Proof. By Bloch's theorem [5], to each harmonic wave in a medium which is invariant with respect 
to the subgroup T of translations, there corresponds an amplitude function of displacements of the form 
u(x) = w(x) exp (ikx), where the function w(x) is invariant under translation and k is a wave vector. 

The function u(x) is transformed according to an irreducible representation of the group of 
translations. 

In fact 

u(x+mla I +m2a2)=u(x)exl(imlot I +m20t2), o[j =Ira~ ( j=l ,2)  

We act on u(x) by elements of the point subgroup H ~ G 

u~ (x) = giu(x)  = w~ (x)exp(ik/x) (gj  ~ H)  

(wj(x) = gjw(x), kj = g~k,j = 1, 2 . . . . .  N and N is the order of the group H). 
By the symmetry of the medium, uj(x) are amplitude functions of waves corresponding to one and the same 

frequency, and if all the kj (j = 1, 2 . . . . .  N) are different, it follows from the way in which these functions are 
constructed that they transform according to an irreducible representation of the group G [6]. But if !~ = ki for 
somej and i (that is, I~ is invariant with respect to the elements of some subgroup It0 e H), then uj(x) and ui(x) are 
replaced by linear combinations of them, transformed according to irreducible representations of the group H0. 

(A similar theorem for the free oscillations of elastic systems with point symmetry group was proved in 1970 in 
the author's candidate dissertation.) 

The Brillouin zone for the Bravais lattice [2] with space symmetry group C2~ has the form shown in 
Fig 2 The vectors b, which define this region, can be computed from the formula b. = aj/(2/.) 2, I. = 

• " . . 7 7 :t 

[aj ]/2 (j = 1, 2). The irreducible representations of this group depend on the vector k = oqb 1 + ob2b 2. 
We shall first consider the ease when the star of the vector k consists of the four vectors "(Zlbl dzo.2b2 
(Fig. 2a). In this ease, an irreducible representation of the group is four-dimensional and is uniquely 
defined by the parameter o~ [2]. 

We shall seek the amplitude displacements of points of the medium during wave motion corresponding 
to this irreducible representation in the form of the sum of simple layer potentials 

/0 
u(x)= Y. ~ I"(a, co, x - y t ) q l ( Y t ) d s  I (y /E~t , /o  =4 )  (2.1) 

I=1 ~t 

The directions of integration along the contours fll are shown in Fig. 1. Green's  function F(o~, co, x) 
is calculated using formula (1.5) with the quantity lj replaced by 2 / / ( / =  1, 2). 

It can be shown that the effect of elements of the group C2v, consisting of the identity element, 
reflections in planes ol,0, 02,0 and rotation through 180 ° about thex3 axis will translate the function u(x) 
into the functions uj(x) (j = 1, 2, 3, 4) (where Ux(X) = u(x)), transformed according to a four-dimensional 

2 irreducible representation of the group C2,,  where the only difference between the uj(x) lies in the 
numbering of the potential densities ql(Y) (l = 1, 2, 3, 4). We shall call these potentials symmetric. 

Suppose that on contours ~i (J = 1, 2 , . . . ,  10) the boundary conditions are 

u(x) = 0, x e ~3  (j = 1, 2 . . . . .  10) (2 .2)  

(a) 

\ /  
/ \  

(b) 

--8, 
Fig. 2. 
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Note that it follows from the way in which the functions uy(x) (j = 1, 2, 3, 4) have been constructed 
that if the boundary conditions (2.2) are satisfied for one function ul(x) on four contours of the basic 
rectangle, they are also satisfied for all uj(x) on all contours. 

Substituting expression (2.1) into (2.2), we obtain the system of integral equations 

/0 

Y. f F(ot, o~,x e-yt )q t (y t )ds t  =0 (xp ~Dp,  p = l , 2  ..... Io) (2.3) 
I=I ~ l  

We then have 

I"(U, 0), Xp -- yp ) = S(Xp - yp ) + R(O~, 0~, Xp - yp ) 

S(xp)  = (2n) -I ln(x~p + X~.p)~ 

R(Ot, O~,xt,)=(4I, I2)-' Y. (F~ -gkj)exp(-i~}~)Xl.p i~(P)x ) 
- -  "J2,j 2,p 

l,j 
(2.4) 

r'(~, CO, xp - Yt) = (4/I/2 )-; Z Fkj exp{-i~,~ ) [xhp - PptYl.i + el (1 - Ppt)] - 
k , /  

i~(P)[x Qt, tY2,l+e2(l-Qet)]} ( p # l )  - -  ~ 2 , j  2 , p  - -  

Herexl.p, x2,p, yt.t, Y2.1 are the coordinates of the points xp and yl(xe e D,p, Yt e D,/) in the corresponding 
local systems of coordinates, el, e2 are the coordinates of the centre of the circle f~l in the complete 
system, Pet and Qpl (P, l = 1, 2 . . . .  ,10) are the elements of symmetric matrices, where 

=-1, =-1, =1, e23=1, = - l ,  t' 4=-1 

QI2 = 1 ,  Q 1 3  = -1, QI4 - -1, Q23 = -1, Q24 = -1, QM = 1 

and finally 

• ( P )  = [2k~_(_l)e(p/2)Oq]/(21z), r.(P) l.k ~2.j = [2j~ - (--I)E[(P-I)/2](X2 ] / (2/2 ) 

(E(x) is the integer part of  the number x). 
It follows from (2.4) that (2.3) is a system of Fredholm integral equations of the first kind. 
In each of the loeal systems of coordinates xl -, x2~ we will introduce the polar system rp, ~p (or 0p) 

(Fig. " ~" " " 1) and represent the coordinates of the points xp and Yt m the following form 

xl, p =rpeosOp, x2,p =rpsinOt,, Yl,t =rtcosCb Y2,t =rtsin¢~ (2.5) 

We shall seek a solution of system (2.3) in the form of the series 

qt(Yt) = ~, qtmexp(im¢~) (2.6) 

We substitute (2.6) into (2.3), then multiply by (2~) -1 exp(-/n0p) and integrate over 0p from - n  to 
+n. As a result, we obtain an infinite system of algebraic equations 

to 
Ai.t,,nqp n + ~, ~, A2.t,.t.n.,,,qt m = 0 (2.7) 

I=1 m =  

( p = l , 2  ..... /o; n=0 ,+ l , : t2  .... ) 

where 

Al.p .n=rolnroSno-  r° ( l - ~ n o )  
• 2 1 n l  ' 

A2.,.,.... = 2tA £ k.j 
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{ E(t')[ = 1 i expt±iroU(kf )(O)-inO]dO 
F(p)J 2n kin -/¢ 

U~f ) (0) -- "~l,k~(P)COS O + ~,P;, sin O 

(2.8) 

Using the representation (1.9), we can show that 

E~n(p) • (p) (p) F(p)  n p) =exp(mVkj  )Jn(ro~kj ), kin =( -1 )  L~ p (2.9) 

where ~ . ) i s  determined from the conditions 

sin ~(kf)_-r-(P),H,k / ~(J~), COS~(kf ) ----Y'(P)~2,j/t(f ) ' ~(k~ ) = tI'(Y'(P)~2 "a'( l ~ ( p ) ~ 2 1 J ~ ~ l , k  ] -- ~2,j I J 

The other coefficients of system (2.7) have similar representations 

l~ro ~, F k j e x p [ - i ~ ) e l ( l - P p l )  - "  (P) ~ll~P)E(i) 
= " t~2.je2(1-Qpt,J ~n ~,-m ( p ~ l )  (2.10) A2"p't'n'm 21112 k,j 

Multiplying both sides of Eq. (2.7) by I n I for n ~ 0, we obtain an infinite system of linear algebraic 
equations 

/o 
Bj.~,.,q~ + E ~ l~,p.j.,.r,q~, -" 0 t=! , = - -  (2.11) 

(p =1,2 ..... /o; n = 0,±1,±2 .... ) 

Bi,p. , = r o in roan. o - r o (1 - ~n.O) / 2 

B2,pJ.o.m = A2.p,t,O.ra, B2,p.l,n,,n = a2,pj,n,mlnl (n ~ O) 

Using the smoothness of the functions R(ot, co, xp - yp) and F(ct, co, x e - Yl) (P # 1) for values of 
xp and Yt satisfying (2.5) on the square I 0, ¢ I ~< re, we can see that El B2~o~¢~ 12 < oo and, therefore, 
(2.11) is normal to a Koch system and can be solved by reduction [7]. 

We will consider the case where the "lattice" wave vector k is collinear to but not equal to half the 
vector bl (Fig. 2b). In that case the star of the vector k consists of two vectors: k and -k .  The point 
group of the vector k consists of two elements: the identity element and reflections in the plane al,0 
and has two one-dimensional irreducible representations with numbers j  = 1, 2. Then the two-dimen- 
sional irreducible representations of the group C2~, with the same numbers correspond to the vector k 
(and therefore the parameter ~x also). We will construct the displacement functions transformed accord- 
ing to these representations. In expression (2.1) we must put q1(¢1) -- (-1)  j q4(~4), q2(~2) -- ( -1)  j q3(d~3) 
(j = 1, 2). When comparing the system of integral equations, again, the only symmetry conditions that 
need to be satisfied are the boundary conditions on the contours ~"~1 and f~2. Thus we arrive at a system 
of the form (2.3) in which I0 = 2. Similar changes are made to the subsequent formulae also. 

Now let the star of the vector k consist of only one vector (k = 0, say). Since all the irreducible 
representations of the group c2v are one-dimensional, all the representations of the group C22v in this 
case are also one-dimensional and the representations of both groups can be given the same numbers. 
In the formulae given above, l 0 = 1. 

Substituting the solution of the truncated system (2.11) into (2.1), we arrive at the expression 

u(x) = Uo(x)exp[ioqxl/(2ll) + kx2x2](2/2) ] (2.12) 

I0 n 0 

Uo(X)= r° 5". l"~exp(-/sl ,k-is2j)Y. Y. qt, n H ~  
41t12 k.j ' i = i  m = - n  0 

Hki t==l  exp(i~l)kyl,t+~(21~y2.t+imOt)dOi; sl.tc = - ,  s 2 , j = - -  
- ,  t I l 2 

Note that the function u0(x) in representation (2.12) is invariant under subgroup of translations, and 
the exponential multiplier is transformed according to an irreducible representation of this sub-group. 
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Allowing for the fact that the displacements depend on time we can write 

u(x, t) = I u0(x) lexp{i[a0(x) + krtl  + k2x2 - tot]}, a0(x ) = arg u0(x) 

This shows that on a biperiodic lattice x, nn = x0o + mal + na2 (x00 is an arbitrary point, m, n = 0, 
±1, ±2 . . . .  ), u(x, t) behaves like a plane wave, since I u0(x) I and a0(x) have the same values at every 
lattice point. We shall refer to these as lattice-plane waves (LP-waves). The vector k plays the part of 
a wave vector which assigns the direction of motion of the wave. The wavelength ;L = 2~1 k I = 2n/(tx~/l 2 
+ c~/122) ltz and the phase velocity a) = 0.~ k l = ~(¢x2/I 2 + 0~22/12) t/2. 

Generally speaking, of course, an LP-wave is not a plane wave. The biperiodic function I Uo(X) I defines 
the "amplitude modulation" of the LP-wave, and ao(x) defines the "phase modulation". ] Uo(X) I is called 
the waveform. 

3. The determinant of the truncated system (2.7) (and therefore (2.11)) takes real values. 

For, from (2.10) we have 

It i t  

It follows from (1.5) that F-(ct, to, x n - Yt) = F(--tz, to, x~ - Yt). A change in the parameter ct of this kind corresponds 
to a transition from one local system of coordinates to another. Thus F-(ct, to, xp - Yt) = F(-ct, to, xh0,) - Yh(0), 
where h(p) is a permutation of the symbols 1, 2 . . . . .  10. Hence 

"A2,p,l,n,m ffi A2,h(p),h(1),-n,-m (3.1) 

It follows from (3.1) that performing the complex conjugate operation on the determinant of the matrix of the 
truncated system (2.7) A/(ct, to) (the parameters a andj define an irreducible representation of the group C~) will 
lead to an identical permutation of rows and columns of the matrices, which leaves the determinant unchanged: 
AT(or, to) = ~.0x, to), that is, Aj(ct, co) is a real quantity. 

The roots of the determinant toi(Ctl, ix2) (k = 1, 2 , . . . )  form surfaces in the space of the three variables 
to(a1, ~ ) .  We shall call them frequency surfaces (FS). As noted above, if in the given perforated medium 
an LP-wave propagates with frequency to and wave vector k, an LP-wave with the same frequency 
and with wave vector k, where k = (--k 1, k2) or k = (kl, -k2), can also propagate in it. Thus the LP are 
symmetric about the planes cq = 0 and ct2 = 0. On the other hand, if ct is increased by 21t, ~¢c will become 
equal to ~ = [(k - 1)2_n - ov2]/l. Replacing k by k + 1 in (1.5), we obtain F = (ix, to, x) = F(vt, to, x), 
ct = (Ctl + 2~x, tz2) [or ct = (cq,tz2 + 2n)], whence it follows that the LP are biperiodic with respect 
to cz~ and tx2 with identical periods 2n. Thus, it is sufficient to define the LP on the square 0 ~< o~. ~< 
( / = 1 , 2 ) .  

4. But if the holes have free contours, by an argument similar to that used in Section 2 we obtain the 
expression 

/o 
x(x)/(2~t) = • J Ffn)fot, to, x-yt)qt(yt)dst  (4.1) 

/ = l  f l  t 

Here x(x) are shear stresses on the area with normal n situated at the point x; and F(n)(x) is half the 
derivative of the tx-periodic Green's function in the direction of that normal. 

Taking the limit as x --¢ xp (xp ~ D~) in (4.1), we obtain a system of Fredholm integral equations of 
the second kind which converge to system (2.11), in which 

1 Bw.p., = + 0  

i t  It 

_ ro ~ ~ v{n)(ct, to, xp-yt)exp(im¢~-inOp)dthdOp 

As in Section 3, B2.pdm,, can be expressed in terms of Bessel functions of the first kind. As in the 
case of fixed holes, we have a normal Koch system which can be solved by reduction. 
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Fig. 4. Fig. 5. 

Fig. 6. Fig. 7. 

5. Eramp/es. We will consider an example in which e i -~ Ill2 (e i are the coordinates of the centre of the hole in 
the basic unit cell, i = 1, 2) and we will take the dimensionless variables: x~ = xi/ll (i = 1, 2), to' = to/1/~. We will 
investigate the case where the contours of the holes are fixed. We take l'1 = l'2 = 1, go = 0.25. For the given values 
of cq and o.2, in the series (2.6) we keep 2n0 + 1 terms from --no to +no, thereby truncating the infinite system 
(2.11). To find the roots to~ of the determinant of this system for each value of to' the quantity no is chosen so that 
a further increase results in a fairly small change in the determinant (for no ~> 5 the determinant was computed 
to accuracy 10 -~ when constructing the graphs). 

Figure 3 shows sections of  surfaces by the planes o.2 = 0 and ct 2 = ~1 (when l~ = l[ the LP are still symmetric 
about the planes o.2 = ±ctl). The surfaces are numbered in order of increasing frequencies. 

Figure 4 gives the level lines of the waveform of LP I for cq = rj2, c~ = 0. The numbers 1, 2 and 3 correspond 
to levels 0.25, 0.5 and 0.75 (the function I u0(x) I is normalized so that max u0(x) = 1; only half the picture is shown, 
as it is symmetric). 

Figure 5 shows how the zero line (line Re u(x, t) = 0) moves, that is, its positions at t = (j - 1)T/8 (i = 1, 2, 3, 
4), j is the corresponding number in Fig. 4; T = 2x/to on the "basic" square I x[ I ~< l'/2 (i = 1, 2). When t = T/2 
there are two zero lines on the square (denoted by the numbers 1 and 5). During the next half-period the line 
occupies positions 2,  3 a n d  4 at times t ffi ( j  - 1)T/8 + T/2 (j = 2, 3, 4), but the displacements to the left and right 
of the line have opposite signs to those for the first half-period. We see that the waves move to the right, the direction 
of the lattice wave vector k. 

The level lines of the waveform for LP2 are shown in Fig. 6, and the motion of the waves is shown in Fig. 7; in 
this case, as we see, the wavefronts move to the left, in the opposite direction to It. 
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